
Computers & Graphics (2024)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Parallel Block Neo-Hookean XPBD using Graph Clustering

Quoc-Minh Ton-Thata,∗, Paul G. Kryb, Sheldon Andrewsc

aÉcole de Technologie Supérieure, Montreal, Canada
bMcGill University, Montreal, Canada
cÉcole de Technologie Supérieure, Montreal, Canada

A R T I C L E I N F O

Article history:
Received 23 September 2022

finite element method, physics-based
animation, soft body simulation,
elasticity, real-time physics

A B S T R A C T

The eXtended Position Based Dynamics algorithm (XPBD) enables unified simulation
of various materials from fluids to both elastic solids and stiff solids. In particular,
finite element based neo-Hookean models can simulate near incompressible materials
by means of a decoupled compliant constraint formulation. Due to XPBD’s reliance on
local constraint projections in the solver loop, its computational nature lends itself to
parallelization by means of graph coloring algorithms used to determine partitions of
independent constraints which can be solved simultaneously. However, minimal graph
coloring is bounded from below by the maximum valence of the finite element mesh,
thus hindering parallelization opportunities. In this paper, we propose a novel graph
clustering approach on the constraint graph which groups highly dependent constraints
into supernodes. By applying graph coloring on the supernodal constraint graph, we
are able to significantly reduce the number of partitions, thus enhancing parallelization
of the solver. Furthermore, we accelerate convergence of the neo-Hookean XPBD
solver by a coupled constraint formulation, resulting in enhanced stability and efficiency
compared to previous approaches.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Physics-based animation is increasingly used by computer
graphics, robotics, and VR training applications as a way to
generate realistic and complex animations of soft or deformable
objects. In the case of interactive applications, where real-
time frame rates are often required, extended position based
dynamics (XPBD) [16] has proven to be a useful framework
for efficiently simulating many different physical phenomena.
However, even though parallel implementations of XPBD are
straightforward to realize, simulations involving large and
complex models may still struggle to achieve performance
requirements or remain stable. Improving simulation efficiency
is therefore a continuing research goal.

∗Corresponding author:
e-mail: tonthat.quocminh@gmail.com (Quoc-Minh Ton-That)

State-of-the-art methods for simulating elastic objects using
XPBD employ continuum-based constraints [3] applied to a
finite element discretization. Recently, a decoupled constraint-
pair formulation for stable neo-Hookean materials [17] was
shown to be particularly well-suited for simulating nearly
incompressible materials. Real-time performance is obtained
by a massively parallel implementation of the XPBD algorithm,
which is made possible by a local Gauss-Seidel type solver.
However, performance may still be impacted if the solver
does not converge to a sufficiently accurate solution within an
allotted time budget.

Gauss-Seidel type solver algorithms are known to
demonstrate faster convergence, yet are difficult to parallelize
since sub-sets of independent constraints, or partitions, must
first be identified. Graph coloring approaches [8, 9, 10] may
be used to obtain independent constraint sets. However,
the continuum-based elastic constraints used for simulating

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024)

Fig. 1: We simulate a deformable tetrahedral mesh composed of 165k elements at 15 frames per second. Our coupled constraint formulation significantly improves
convergence of state of the art XPBD, while our greedy graph clustering algorithm further reduces computational cost compared to traditional graph coloring
approaches, reducing solve times by an order of magnitude.

tetrahedral models often yield large numbers of partitions, thus
limiting acceleration potential that comes with a parallel solver
since partitions must be processed sequentially.

In this paper, we accelerate the convergence of elastic body
simulation using stable neo-Hookean constraints by solving
the hydrostatic and deviatoric constraints in a coupled fashion,
which exhibits faster convergence rates surpassing current
methods. Figure 1 shows a preview of our results. Our proposed
algorithm requires only trivial modifications to existing XPBD
implementations by using 2 × 2 block solves to compute the
Lagrange multiplier corrections rather than computing them
individually. Solver efficiency is further improved by means of
a graph clustering method that significantly reduces the number
of constraint partitions and that facilitates a massively parallel
solver implementation. The clustering method has the added
benefit that it generalizes to arbitrary constraint models and
geometrical discretizations.

2. Related Work

Our work builds on previous acceleration methods for soft-
body simulation. Acceleration methods in this context either
improve computational efficiency, improve convergence of the
underlying numerical methods, or reduce the complexity of the
original problem. In this section, we briefly review work that
focuses on employing these strategies, or combinations of them,
to improve the performance of soft-body simulations.

Model Reduction. Model reduction approaches
compute soft-body deformations using a mapping from a low-
dimensional deformation space to high-resolution deformations
in the full space of the model. By reformulating the equations
of motion in the reduced space, the size of the system of non-
linear equations to be solved for time integration is significantly
reduced, leading to major speed ups. Barbič and James [2]
apply modal analysis to the stiffness matrix, keeping only
the most relevant deformation modes, and derive a second-
order Taylor expansion around a given configuration to account
for non-linear elastic models. An et al. [1] accelerate the

computation of internal forces in a reduced space by choosing
only a coarse set of representative integration points in the
finite element mesh and compute energy gradients at those
points. Kim and James [14] enable updating and downdating
the mapping dynamically. Fulton et al. [11] introduce neural
networks for non-linear model reduction by expressing the
mapping as a variational auto-encoder. Shen et al. [30]
build on the work of Fulton et al. [11] by introducing a
complex-step finite difference approach with reverse mode
automatic differentiation to compute higher-order derivatives
of the mapping function, thus enhancing the expressivity
of the deformations. While model reduction techniques
are particularly efficient, handling large mesh deformations
in real-time, they require non-trivial precomputation, and
recently proposed model reduction methods based on machine
learning often require manual intervention during the training
phase. Additionally, model reduction techniques do not lend
themselves well to varying boundary conditions and topological
changes due to the precomputation phase assuming their
invariance.

Constraint-based Methods. Projective dynamics [5]
reformulates the elastic potential as a sum of quadratic
constraint energies. In doing so, the optimization problem
associated with the backward Euler time stepping scheme
becomes a convex quadratic optimization problem with a
constant Hessian matrix that can be prefactored (e.g., by
a sparse Cholesky decomposition). A local-global iterative
approach is employed at each time step, where the local step
consists of constraint projections that may be computed in
a parallel fashion, and the global step solves the prefactored
linear system. Brandt et al. [6] apply model reduction to
projective dynamics and achieve simulation rates an order of
magnitude faster than the standard algorithm. Fratarcangeli
et al. [9] and Fratarcangeli et al. [10] accelerate the global solve
using graph coloring techniques with iterative linear solvers.
Wang [33] accelerate convergence using the Chebyshev semi-
iterative method by estimating a spectral radius associated
to projective dynamics solves. Peng et al. [26] express the

Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024) 3

local-global steps as a fixed point iteration, enabling the
use of a stable Anderson acceleration scheme to improve
convergence. Although projective dynamics is highly stable
and efficient, constraints are restricted to a quadratic form,
and the global solve is not easily parallelized. Additionally,
dynamic constraints must be incorporated by refactorizing
the lead matrix, or by incremental updates and downdates.
These properties pose performance challenges for multi-body
simulations compared to other position based methods [4].

Extended position based dynamics [16, 23] (XPBD) is
another constraint-based framework that provides a unified
approach for multi-phase multi-body simulation. However,
it requires only that the constraint functions are rigid motion
invariant and first order differentiable. XPBD time integration
consists of a symplectic Euler step, followed by an iterative
solver loop that projects positions onto individual constraint
manifolds one at a time along constraint gradients. Exploiting
the sparsity of these gradients yields a massively parallel solver
loop, which is the key to XPBD’s performance. Although
PBD [21] methods were first used with geometric constraints,
recent methods favor continuum-based elasticity constraints [4,
17, 22].

It is also possible to employ global linear solves of the
compliant constraint formulation [28], which yields better
convergence. However, such approaches forfeit parallelizability
of the solver loop. Inclusion of a geometric stiffness term may
drastically improve stability in this case [32].

Graph Partitioning. Fratarcangeli and Pellacini [7] use
graph coloring [20] to determine independent sets of XPBD
constraints that can be solved in parallel on the GPU. The
number of colors determines the number of independent sets,
and consequently determines the number of GPU kernel calls
per solver iteration. Fratarcangeli and Pellacini [8] observed
that a large number of GPU kernel calls is the main culprit
for parallel execution time overhead, and succeed in reducing
the number of colors on the constraint graph by introducing
ghost constraints and ghost particles. Advantageous speedups
are thus obtained, but the dynamics of the physics change.
Matula and Beck [19] show that vertex reorderings can bring
the color count closer to the lower bound. They propose a
smallest degree last vertex reordering which may yield lower
numbers of colors in practice. Peiret et al. [25] and Liu and
Andrews [15] use graph partitioning algorithms to parallelize
the simulation of highly connected systems of rigid bodies.
Our proposed method builds on the work of Macklin and
Müller [17]. They mention that it is possible to reduce
the number of constraint partitions by considering hexahedral
meshes in which each hexahedron contains 5 or 6 constrained
tetrahedra. A lower bound of 8 sets of hexahedra is attainable,
thus significantly reducing GPU kernel call overhead, making
simulation maximize parallelizability.

3. Background

For deformable tetrahedral meshes with vertices V and
tetrahedra T , XPBD simulations integrate in time Newton’s

equations of motion

Mẍ = fint(x) + fext(x) , (1)

where M ∈ Rn×n is the diagonal nodal mass matrix, fint(x) ∈
Rn is the internal elastic force vector, fext(x) ∈ Rn is the
external force vector, and x ∈ Rn are the degrees of freedom
corresponding to the vector of stacked tetrahedral mesh vertex
coordinates, where n = 3|V |.

The internal forces fint(x) are expressed as the negative
gradient of the potential

U(x) =
1
2

C(x)Tα−1C(x) , (2)

such that

fint(x) = −∇U(x)T

= −∇C(x)Tα−1C(x) ,
(3)

where C(x) =
[
C1(x),C2(x), . . . ,Cm(x)

]T
∈ Rm is a vector of

m constraint functions C j(x) ∈ R, and α ∈ Rm×m is a block
diagonal compliance matrix.

Following a finite difference time discretization, the
equations of motion in Equation 1 are reformulated by
introducing Lagrange multipliers λ ∈ Rm defined as

λ = −α̃−1C(x) , (4)

where α̃ = α
∆t2 and ∆t is the time step.

Algorithm 1 XPBD time integration for a single time step.

h← ∆t/numSubSteps ▷ ∆t is time step size
for s = 1 . . . numSubSteps do
λ← 0
x← xt + hvt + h2M−1fext(x)
α̃← 1

h2α
for j = 1 . . .m do ▷ Solver iteration

A← [∇C j(x)M−1∇C j(x)T + α̃ jj]
∆λ j ← −A−1(C j(x) + α̃ jjλ j)
∆x←M−1∇CT

j (x)∆λ j

λ j ← λ j + ∆λ j

x← x + ∆x ▷ constraint projection
end for
vt+1 ← x−xt

h
xt+1 ← x

end for

Integrating Equation 1 by one step in time then requires a
non-linear solve with the fixed point iteration

λk+1 = λk + ∆λ

xk+1 = xk + ∆x
(5)

starting from the initial iterates x0 = xt + ∆tvt + ∆t2M−1fext(x),
where xt are the degrees of freedom at time step t and vt are the
nodal velocities at time step t, and λ0 = 0.

4 Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024)

Instead of using a global linear solve to obtain ∆λ and
∆x at every iteration, XPBD opts for a Gauss-Seidel type
local solver which projects every constraint C j(x), updating
their associated Lagrange multiplier and degrees of freedom
sequentially. The XPBD algorithm is presented in Algorithm 1,
where substepping is used [18].

Recent methods simulate hyper-elastic continuum-based
materials in a position based framework [3] by using tetrahedral
meshes and a piece-wise linear finite element discretization of
the deformation function ϕ(X). They constrain each tetrahedral
element e ∈ T by some strain energy density function Ψ(F)
integrated over the domain Ωe of e, where F = ∇Xϕ(X) ∈ R3×3.
Due to the piece-wise linear basis, F is constant over Ωe, such
that element e’s constraint function trivially becomes

Ce(x) =
∫
Ωe
Ψ(F)∂Ωe

= ωeΨ(F),
(6)

where ωe is the volume of the element.
Macklin and Müller [17] use the stable neo-Hookean model

of Smith et al. [31], where the strain energy density is defined
as

Ψneo(F) =
λ

2
(det(F) − γ)2︸ ︷︷ ︸
ΨH (F)

+
µ

2
(tr(FT F) − 3)︸ ︷︷ ︸
ΨD(F)

, (7)

with γ = 1 + µ
λ
, where µ, λ are the Lamé coefficients.

The strain energy density may be decomposed into a
hydrostatic term, ΨH(F), and deviatoric term ΨD(F). Instead of
defining a single constraint function per element, Macklin and
Müller [17] exploit Equation 7 to determine a pair of hydrostatic
and deviatoric constraint function and compliance for every
element:

CH(x) = det(F) − γ (8a)

αH =
1
λωe

(8b)

CD(x) =
√

tr(FT F) (9a)

αD =
1
µωe

(9b)

We thus have that m = 2|T |, α is a diagonal matrix with
coefficient pairs αH and αD, and C(x) is a vector of constraint
pairs CH(x) and CD(x), for every element e.

3.1. Parallel Solver
Because constraint projection in solver loop iterations

directly updates x based on its current value, we cannot trivially
parallelize the algorithm. However, each constraint gradient
∇C j(x) is sparse. Two constraints that have non-overlapping
sparsity patterns can update x in any order because the
constraint projections modify independent degrees of freedom.

To better understand how the sparsity of the constraint
gradients can be leveraged for parallel updates, we define

C j =

{
i
∣∣∣ ∂C j(x)
∂xi

, 0,∀ i ∈ [1, n]
}

(10)

Algorithm 2 Parallel XPBD solver iteration.

for c ∈P do
for j ∈Pc do ▷ Parallelize loop

A← [∇C j(x)M−1∇C j(x)T + α̃ jj]
∆λ j ← −A−1(C j(x) + α̃ jjλ j)
∆x←M−1∇CT

j (x)∆λ j

λ j ← λ j + ∆λ j

x← x + ∆x
end for

end for

as the sparsity pattern of ∇C j(x) giving its non-zero structure.
In other words, C j gives the degrees of freedom that influence
constraint C j. Therefore, to parallelize the solver loop, we seek
to partition the constraints into a set of partitions P , where each
partition Pc ⊂ [1,m], for c ∈ [1, |P |], contains independent
constraints, i.e., C j ∩ Ck = ∅ for any two constraint indices j
and k in Pc.

Algorithm 1 can then be modified to loop over each partition
Pc and perform a parallel projection of all constraints in
Pc. The parallel variant of the XPBD solver is provided in
Algorithm 2.

3.2. Graph Coloring
Let us next consider how to construct the constraint partitions

Pc from a constraint graph G = (V,E), where the graph nodes
V are constraints, and E is the set of edges. An edge exists
between two graph nodes (constraints) iff they share at least
one degree of freedom, that is,

(C j,Ck) ∈ E ⇐⇒ C j ∩ Ck , ∅. (11)

It is possible to find one of many feasible constraint partitions
by a graph coloring algorithm acting on the constraint graph
G. A graph coloring algorithm will assign a color to each
constraint such that it is different from the color of any
neighboring constraint. That is, if (C j,Ck) is an edge in
E then the constraint gradient patterns overlap and the two
constraints must have different colors. This property permits
the construction of partitions by grouping constraints of the
same color, i.e., C j for j ∈ Pc will all have the same color,
and that color will be different from the color of constraints in
other partitions. Thus, all constraints of the same color may be
projected in parallel in the solver loop.

We refer the reader to the work by Fratarcangeli and Pellacini
[8] for further details on graph coloring approaches suitable to
position based dynamics simulations. The notation we use in
this section and the rest of the paper is summarized in Table 1.

4. Graph Clustering

We observe from Section 3.2 and Algorithm 2 that
parallelization is directly related to the number of colors
obtained from the graph coloring process. In the limit, if we
have as many colors as constraints, our parallel solver reverts
to its sequential counterpart. In contrast, for a single color,
all constraints can be projected simultaneously. Hence, as the
number of colors decreases, parallelism is enhanced.

Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024) 5

Initial mesh Constraint graph Graph coloring Constraint colors

Constraint colorsSupernodal graph Supernodal graph coloring

Fig. 2: Schematic overview of our graph clustering based constraint partitioning method. The top row shows the traditional partitioning approach based on directly
coloring the constraint graph G. In contrast, our method builds a supernodal graph Ḡ from G by means of a clustering algorithm. The coloring of Ḡ (sparse graph
bottom row), in comparison to the coloring of G (dense graph top row), generates significantly fewer constraint partitions and leads to superior solver performance.

Table 1: Notation and symbols used throughout this paper.

Symbol Definition

C j jth constraint in vector C, where j ∈ V
C j Non-zero pattern of ∇C j(x)

G = (V,E) Constraint graph
Pc Constraint partition c
P Set of constraint partitions
r rth constraint cluster
χ(r) Constraint set of cluster r
π(j) Cluster of constraint j

Ḡ = (V̄, Ē) Constraint cluster graph
P̄c Cluster partition c
P̄ Set of cluster partitions

4.1. Bounds on Parallelizability

For a tetrahedral discretization, each continuum constraint
is parameterized by exactly 12 degrees of freedom comprised
of the x, y, z components of the four tetrahedral nodes.
Because a node is shared by all of its incident tetrahedra,
its corresponding degrees of freedom are also shared by all
constraints associated with these incident tetrahedra. The
number of colors is therefore bounded below by the largest
vertex one-ring neighbourhood of tetrahedra. For the stable
neo-Hookean constraints, there are exactly two constraints per
tetrahedra. The following lower bound on the number of colors
of a tetrahedral mesh model using this neo-Hookean material
thus applies

|P | ≥ max
i∈[1,|V |]

2|Ni|, (12)

where Ni is the one-ring neighbourhood of tetrahedra around
vertex i. In graph terminology, in the general case, the

minimum number of colors in a graphG is the size of the largest
clique in G.

In practice, this lower bound can be prohibitively high. For
instance, a tetrahedral mesh built from a regular grid of voxels,
with each grid cell containing 5 tetrahedra, has a lower bound of
around 40 colors. For general meshes, the number of necessary
colors can be much higher. Thus, GPU implementations of
XPBD are hindered by simulating tetrahedral finite element
meshes, which require a significant number of GPU kernel calls
per solver iteration.

We know that hexahedral meshes have much better lower
bounds on coloring, such that it is possible to obtain only 8
colors, and each hexahedron can be chosen to encapsulate 5 or
6 tetrahedral elements. This is due to the fact that for a regular
hexahedral mesh, interior vertices have exactly 8 incident
hexahedra, while boundary vertices have even less. Thus,
for stable neo-Hookean constraints derived from a hexahedral
mesh, it is possible for every hexahedron to encapsulate either
10 or 12 constraints derived from their associated 5 or 6
tetrahedra. Rather than coloring the constraint graph, we may
then color the graph of hexahedra instead and thus obtain
much better parallelism due to the low number of hexahedral
partitions created. Each partition can then project groups of
constraints encapsulated by all hexahedra of the same color
(albeit in a sequential manner for those constraints within the
same hexahedron).

This analysis allows us to conclude that for the same
constraint set, it is possible to significantly enhance parallelism
by forming partitions of groups of constraints, rather than
partitions of constraints. However, we will show that these
constraints need not be derived from a finite element hexahedral
mesh. We thus propose to generalize this constraint grouping
approach as a graph clustering approach.

6 Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024)

Algorithm 3 Clustered parallel XPBD solver iteration.

for P̄c ∈ P̄ do
for r ∈ P̄c do ▷ Parallelize loop

for C j ∈ χ(r) do
A← [∇C j(x)M−1∇C j(x)T + α̃ jj]
∆λ j ← −A−1(C j(x) + α̃ jjλ j)
∆x←M−1∇CT

j (x)∆λ j

λ j ← λ j + ∆λ j

x← x + ∆x
end for

end for
end for

4.2. Grouping Constraints
Regardless of the underlying spatial discretization and

constraint set, we aim to identify non-overlapping clusters of
constraints in G. We thus define Ḡ = (V̄, Ē) as the supernodal
graph derived from the original constraint graph G, where V̄ is
the set of constraint clusters, or supernodes, such that coloring
Ḡ will result in fewer partitions. The supernodal graph Ḡ is
related to the constraint graph G by a parent map π(·) and a
children map χ(·). Given a constraint index j ∈ V, π(j) = r
tells us that constraint C j belongs to cluster r ∈ V̄, while
χ(r) = { j | j ∈ V , π(j) = r} lists all constraint indices
belonging to cluster r ∈ V̄.

Hence, our supernodal graph forms a topology of clusters
r ∈ V̄ whose connectivity is defined by the property

(r, s) ∈ Ē ⇐⇒ ∃ (j, k) ∈ E | j ∈ χ(r) ∧ k ∈ χ(s). (13)

In other words, two clusters are neighbours in the supernodal
graph Ḡ if and only if they contain constraints (one from
each cluster) with overlapping sparsity pattern (i.e., overlapping
influence). Equivalently, Ē can be defined using the parent map
π as

Ē = {(π(j), π(k)) | (j, k) ∈ E, π(j) , π(k)}. (14)

A graph coloring algorithm applied to Ḡ thus outputs a set P̄ of
partitions P̄c of clusters r. The clustered parallel XPBD solver
variant is presented in Algorithm 3.

Once again, we have assumed the existence of such a
set of clusters V̄. How should one find such a convenient
clustering of G? Ideally, we would like |P̄ | ≪ |P |. Certain
classical clustering techniques [27] fail on constraint graphs
derived from meshes. This is due to the fact that classical
clustering techniques look for natural clusters in non-uniform
graphs, such as those formed in social networks, while meshes
are especially uniform. Computing exact solutions for such
clustering problems remains NP-hard [27]. Consequently, we
choose to develop a simple greedy clustering algorithm derived
from an intuitive heuristic.

4.3. Greedy Algorithm
By noticing that the number of colors resulting from a

graph coloring process increases as the amount of dependencies
between constraints increases, we define the distance metric

d(C j,Ck) = 1 −
|C j ∩ Ck |

|C j ∪ Ck |
. (15)

Intuitively, this metric tells us that constraints sharing many
degrees of freedom in their parameterization should be
considered close, while constraints sharing few degrees of
freedom or none at all should be considered far. Our clustering
approach then seeks to find clusters of constraints near one
another. In doing so, individual clusters contain highly
dependent constraints, while constraints from separate clusters
are less likely to depend on each other, thus reducing the lower
bound on optimal coloring for Ḡ.

However, as a cluster grows, so does its computational
workload in the parallel solver. Specifically, there is more
work to be done sequentially. Furthermore, uneven cluster
sizes can also negatively impact parallel implementations, since
smaller clusters scheduled in the same parallel batch must wait
for larger clusters in the same batch to finish executing, thus
occupying computational resources without actually executing
meaningful computations. Hence, we make the maximum
cluster size Ks a user-defined parameter to help keep cluster
sizes balanced.

We start our greedy clustering approach by initializing the
parents of constraints to be unassigned (i.e., π(Ci) = ∅),
and then choose a seed vertex u0 in G as the first constraint
satisfying

u0 = arg min
C j∈V, π(C j)=∅

∑
(C j,Ck)∈E, π(Ck)=∅

d(C j,Ck). (16)

Then, starting from u0, we traverse the graph G in breadth
first order while greedily adding unclaimed neighbouring
constraints in increasing order with respect to the distance
metric, and starting a new cluster each time the maximum
cluster size Ks is reached.

If not all nodes are assigned to clusters, but no clusters of size
Ks can be created, the process repeats with a seed constraint
identified by Equation 16, and with the the maximum cluster
size Ks decreased by 1.

This algorithm thus produces as output a set V̄ of constraint
clusters r, with 1 ≤ |χ(r)| ≤ Ks, where Ks denotes the initial
user-defined maximum cluster size. Traversing the constraint
graph in breadth-first order enables the clustering process to
exploit spatial locality in the underlying geometry from which
the topology of G is inherently derived. See Algorithm 4 for the
pseudo-code and Figure 3 for a visual example of the clustering
procedure.

Using our graph clustering algorithm in a precomputation
phase, the parallel solver variant in Algorithm 3 is observed
to be at least as efficient as the classical parallel variant in
Algorithm 2, depending on the underlying hardware. In theory,
our variant becomes faster compared to the classical graph
coloring based parallel XPBD as the hardware parallelism
capacity increases. We further note that our clustering can be
used with any constraint type.

5. Neo-Hookean Constraint Coupling

While clustering improves computational efficiency, the
solver convergence is largely unaffected. In this section,
we propose a modification to the constraint formulation of

Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024) 7

5

8 7

6

1

4 3

2

5

8 7

6

1

4 3

2

5

8 7

6

1

4 3

2

Fig. 3: An example of how greedy clustering with Algorithm 4 computes supernodes with maximum cluster size Ks = 4. Given a constraint graph (left) derived
from triangle constraints, we use [1, 2, 4, 5, 3, 6, 8, 7] as a breadth-first traversal of nodes starting from the root node u0 = 1. The algorithm begins with node C j = 1
and attempts to create a cluster with the surrounding neighbours of C j sorted by distance (Equation 15). Node C j = 1 has neighbours 2, 4, and 5, and successfully
forms a cluster {1, 2, 4, 5} of exactly the maximum size (middle). The next three nodes in the breadth first search (2, 4, and 5) are skipped as they already belong to
a cluster. The next node C j = 3 is adjacent to all nodes but 1. While nodes 2, 4, 5 are already in a cluster, the remaining neighbours form the cluster {3, 6, 7, 8} of
maximum size Ks = 4. With all nodes claimed, the algorithm terminates.

the stable neo-Hookean model that significantly improves the
convergence of the solver.

Although the constraint formulation for the stable neo-
Hookean material model of Macklin and Müller [17] exhibits
desirable properties such as stability in the face of near
incompressibility, its convergence behavior fares poorly. Early
and mid stage solver iterations yield major artifacts such
as significant volume loss, wrinkling, and oscillations in
deformation. This behavior is attributed to the decoupled
constraint formulation where the hydrostatic constraint CH(x)
and the deviatoric constraint CD(x) are treated separately.

An important consequence of this decoupling is that rest
configurations, that is, zero-energy deformations, result in
non-zero constraint gradients ∇CH(x) and ∇CD(x). Hence,
even small perturbations δx from a rest configuration x are
magnified to non-trivial constraint projections ∆x when fed
into the XPBD solver. Because of the local nature of the
XPBD solver, constraint projections ∆x do not necessarily
descend into solution iterates which simultaneously decrease
the energy in surrounding constraints. In other words, the
constraint projection ∆xH resulting from CH(x) might send x
into directions of increasing CD(x) and vice versa.

It is important to note that this observation is not specific
to the stable neo-Hookean constraints. This reasoning could
be applied to any constraint type solved with XPBD’s Gauss-
Seidel like iterations. For example, geometric tetrahedral
volume conservation constraints produce erratic gradient
directions and must be coupled with tetrahedral mesh edge
distance constraints for stabilization. However, in previous
continuum-based constraint formulations where every finite
element is associated with a single constraint, a configuration x
such that C j(x) = 0 ensures an element rest configuration x such
that
∫
Ωe Ψ(x)∂Ωe = 0. In contrast, for the decoupled constraints

CH(x) and CD(x), configurations x such that CH(x) = 0 or x
such that CD(x) = 0 do not imply element rest configuration.
Thus, in our method, we wish to find a constraint formulation

such that configurations x where C j(x) = 0 imply element rest
configurations.

Hence, we propose a coupled constraint formulation to
address these instability issues. In our method, we allow vector-
valued constraints Cneo : Rn → R2, which we refer to as
constraint blocks, where

Cneo(x) =
[
CH(x)
CD(x)

]
. (17)

Using the convention that gradients are row vectors, we can
compute the 2-by-n Jacobian of Cneo as

∇Cneo(x) =
[
∇CH(x)
∇CD(x)

]
. (18)

The Schur complement operator and the constraint compliance
are now 2 × 2 matrices, such that

A =
(
∇Cneo(x)

)
M−1 (∇Cneo(x)

)T
+ α̃neo ,

and

α̃neo =
1
∆t2

[
αH 0
0 αD

]
,

where αH and αD are the compliance parameters associated
with the hydrostatic and deviatoric constraints, respectively.
Thus, constraint projection corrections incorporate information
from both the hydrostatic constraint gradient and the deviatoric
constraint gradient simultaneously with a simple 2-by-2 block
solve.

When coupling constraints into a block solve, the resulting
constraint block inherits the union of the sparsity patterns of all
its child constraints. In the case of the neo-Hookean constraint
pair, the hydrostatic and deviatoric constraints have exactly the
same sparsity pattern, so the constraint block does not change
the clustered graph topology when we treat these constraints as
a coupled pair.

8 Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024)

Table 2: Timing results using constraint blocking and clustering. The abbreviations used in column headings are C for clustered and B for blocked constraints.
Timings are reported in milliseconds. Speedups are reported with respect to the baseline timings.

Model Tetrahedra Colors Time (ms) Speedup
Baseline C Reduction Baseline C B B+C C B B+C

Beam 3727 40 17 0.43 285.03 170.49 41.29 20.46 1.67x 6.90x 13.93x
Bunny 56371 52 21 0.40 432.28 315.33 90.86 52.81 1.37x 4.76x 8.19x
Armadillo 45593 62 26 0.42 528.26 374.81 108.89 61.13 1.41x 4.85x 8.64x
Spot 19835 104 25 0.24 885.07 324.18 173.78 54.25 2.73x 5.09x 16.31x
Octopus 22213 78 22 0.28 663.96 299.78 132.76 49.10 2.21x 5.00x 13.52x
Squirrel 64768 56 22 0.39 457.91 332.16 94.78 55.41 1.38x 4.83x 8.26x

Algorithm 4 Greedy K-Neighbour Clustering.

V̄ ← ∅

while Ks ≥ 1 do
u0 ← Equation 16
for C j ∈ BFS G(u0) do ▷ Breadth first order from u0 in G

if π(j) = ∅ then
r ← |V̄|
χ(r)← χ(r) ∪ { j}
π(j)← r
for (C j,Ck) ∈ E do ▷ Sorted by increasing d(C j,Ck)

if π(k) = ∅ ∧ |χ(r)| < Ks then
χ(r)← χ(r) ∪ {k}
π(k)← r

end if
end for
if |χ(r)| = Ks then
V̄ ← V̄ ∪ {r}

else ▷ Cluster too small, undo
for k ∈ χ(r) do
π(k) = ∅

end for
χ(r) = ∅

end if
end if

end for
Ks ← Ks − 1 ▷ Make smaller clusters with leftovers

end while

Hence, using constraint blocks Cneo does not affect any of
our previous XPBD solver variants, graph coloring algorithms,
and clustering algorithms, with the exception of requiring a
2 × 2 matrix solve in order to obtain our Lagrange multipliers
corrections

A
[
∆λH

∆λD

]
= −

[
CH(x)
CD(x)

]
− α̃neo

[
λH

λD

]
, (19)

where λH and λD are the lagrange multipliers associated with
hydrostatic and deviatoric constraints respectively, and α̃neo is
the 2 × 2 compliance matrix associated with constraint block
Cneo.

An LU solve with partial pivoting can be used to
solve for the Lagrange multiplier corrections, which is
equivalent to applying direct substitution to Equation 19 with

improved conditioning. Although in practice, we have not
encountered cases where the Schur complement matrix suffers
ill-conditioning issues, in theory, it is easy to craft such ill-
conditioned systems. A combination of varying nodal masses
and Lamé coefficients directly influence conditioning of the
2 × 2 system.

6. Results & Discussion

In this section, we present several experiments that highlight
the benefits of our graph clustering algorithm and blocked
constraint solve for elastic-body simulations with the XPBD
framework. We compare against a baseline solver that uses
the stable neo-Hookean constraint formulation proposed by
Macklin and Müller [17] and that applies a greedy graph
coloring algorithm on the constraint graph to parallelize the
solver. Animations of the experiments in this section can also
be found in the supplementary video.

6.1. Implementation
CPU results were obtained using an 8-Core AMD Ryzen

7 3700X 3.60 GHz processor with 16GB of memory, while
GPU results were obtained using an NVIDIA GeForce RTX
2060 Super processor. Our GPU implementation of XPBD is
rather straightforward, storing simulation state and constraint
parameters in global memory. The simulation state stores
positions x ∈ Rn, velocities v ∈ Rn, forces f ∈ Rn,
inverse masses w ∈ Rn and Lagrange multipliers λ ∈ Rm.
The constraint parameters store, for each element, quadrature
weights wg ∈ R, quadrature points Xg ∈ R3, Lamé coefficients
λ, µ ∈ R, basis function gradients ∇ϕ(Xg) ∈ R3 for each
tetrahedron vertex, the 12 unique non-zero values of the
deformation gradient derivatives ∂F

∂x ∈ R3×3×12, as well as
compliance parameters αH , αD ∈ R and C j, where |C j| =

12 for tetrahedral constraints. Clusters and cluster partitions
must also be stored in order to implement parallel constraint
projection. Additional book-keeping data structures are stored
for indexing into the various GPU arrays. Table 3 exposes the
GPU memory footprint of our XPBD implementation using
graph clustering in various scenarios, showing that memory
overhead is negligible even for large models.

Although much of the data stored on GPU is read-only, such
as constraint parameters, clusters, partitions and indexing data
structures, we do not exploit optimized read-only GPU memory

Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024) 9

Fig. 4: Each pair of images shows constraint partitions generated with and without clustering for selected examples. Tetrahedral elements of the same color are
solved in parallel. Using our clustering approach, there are fewer colors (left images) compared to partitions generated using typical graph coloring approaches
(right images).

Table 3: Total GPU memory usage per tetrahedral mesh using our clustered
parallel XPBD implementation with block neo-Hookean constraints.

Model Vertices Tetrahedra Memory (Mb)
Armadillo 987 2922 0.63

Beam 936 3727 0.78
Spot 5135 19835 4.19

Octopus 6731 22213 4.79
Armadillo 9751 45593 9.50

Bunny 13808 56371 11.97
Squirrel 15408 64768 13.73

Armadillo 39062 162385 34.44

regions, which our timings would no doubt benefit from. Our
timings are also affected by the fact that we copy memory from
GPU to CPU every time step in order to render our animations.
Additionally, we use single precision floating point arithmetic.

Our CPU implementations of XPBD use the Eigen library
[12] for linear algebra routines, and Intel TBB to parallelize
various XPBD solver variants. CUDA 11.4 [24] was used
for our GPU implementations. We used polyscope [29] to
render the animations, and TetWild [13] was used on hand-
picked models from the Thingi10K dataset [34] to generate our
tetrahedral meshes.

6.2. Performance

We test our clustering algorithm on tetrahedral models of
varying size and topology. Table 2 summarizes the performance
of blocked and clustered simulations compared to a baseline
solver. The reported timings are the average execution time of
each timestep over 300 frames using the GPU.

Time step and substeps. A time step ∆t = 0.01 s is
used for all performance experiments. The number of substeps
changes depending on the example and whether clustering and
blocked constraints are being used. We determine the number
of substeps by a convergence analysis (see Figure 5), as well
as qualitative visual assessments aiming to compare equivalent
simulations. For all blocked simulations, 50 substeps are used,
except the beam model, which was simulated with 30 substeps.
Otherwise, 250 substeps are used for unblocked simulations,
except the beam, which was simulated using 200 substeps.

Constraint graph processing. The block neo-Hookean
constraints were used to build the constraint graph G, such that
each constraint is associated with a tetrahedral element. Prior
to assembling G, we reorder the vertices based on the smallest

degree last ordering [19]. Then, we apply Algorithm 4 on G
to obtain the supernodal graph Ḡ using Ks = 5. By applying
the same greedy graph coloring algorithm on both G and Ḡ,
we observe that Ḡ yields between 17 to 26 colors, while G
yields between 40 and 104 colors, demonstrating reductions in
number of colors between 24% and 41% of the original number
of colors.

Effect of clustering. Figure 4 visualizes the partitions using
the jet colormap for various tetrahedral models when clustering
and graph coloring algorithms are applied. When a typical
graph coloring algorithm is used, there are many more colors,
indicating a larger number of partitions. Yet when clustering
is applied, there are fewer colors, thus giving a significant
improvement in solver performance. We can see from Table 2
that solve times have much higher correlation with the number
of colors, rather than the size of the tetrahedral models. Indeed,
one can see that the Spot model is simulated at 54 ms per time
step, while the Bunny is actually simulated more efficiently
at 52.81 ms per time step, even though the workload triples
from 19.8k elements to 56.3k elements, because our clustering
yields only 21 colors for the Bunny, which is less than the 25
colors obtained for the Spot model. Note that even though our
clustering algorithm is highly effective in enhancing theoretical
parallelism, we are still bounded by hardware capacity. Our
parallel CPU implementations are limited to 16 threads, such
that there is no speedup between Algorithms 2 and 3, although
there are no slowdowns either. While our clustering method
does not reach the lower bound obtainable using hexahedral
meshes [17], it does not make any assumptions on the constraint
model, thus generalizing to arbitrary constraint types.

Effect of coupled constraints. Solving for the neo-
Hookean constraints using a block form has the most impact
on the performance of all examples. This is due mainly
to the notably improved convergence that is observed when
the blocked constraint formulation is used. We analyze the
convergence in further detail in the next section.

6.3. Solver Convergence
To evaluate solver convergence, we select a simulation frame

from the Beam example in which the elastic body exhibits the
highest total elastic potential energy and perform 100 solver
substeps. We then evaluate the decrease in elastic energy with
respect to solver iterations using the decoupled neo-Hookean
constraint formulation, and again using our coupled constraints
and graph clustering strategy. Recall that the beam is comprised
of 3.7k elements with a Young’s modulus Y = 107 Pa, Poisson

10 Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024)

0 20 40 60 80 100
Solver substeps

105

106

E
la

st
ic

 e
n
e
rg

y

Baseline
Clustered
Blocked
Blocked + Clustered

Fig. 5: Convergence for the Beam example using different GPU solver
variants shows the superior behavior of block solves of coupled neo-Hookean
constraints, while clustering does not hinder convergence.

Fig. 6: The Beam example simulated using the baseline method (left) and the
block neo-Hookean constraints (right). Both simulations use equivalent time
step, 30 substeps, and 1 iteration per substep. The normal map of the boundary
surface is displayed to highlight the differences between the two simulations.

ratio ν = 0.45, and mass density ρ = 103 kg m−3. The results of
our implementations are shown in Figure 5.

In a single substep, the coupled constraint solve reduces the
elastic energy at least one order of magnitude faster than the
decoupled approach. This convergence improvement occurs
regardless of whether clustering is being used to parallelize
the solver or not. After approximately 10 substeps, the
elastic energy is reduced to convergence for the blocked
constraints, while the decoupled constraint formulation still has
not converged after 100 substeps. In our experiments, wrinkling
artefacts on the beam model remain noticeable using the
decoupled constraint model, and close to 200 solver substeps
are required to attain the same visual quality as the blocked
solve.

To further reinforce the implications of convergence
improvements using our coupled formulations, we conduct
experiments in which the same computational budget is allotted
to the baseline configuration and its corresponding blocked
version. Figures 6 and 7 show the results. For the same
material and simulation parameters, tetrahedral meshes in
blue use our coupled formulation, while pink ones use the
decoupled formulation from Macklin and Müller [17]. The
decoupled formulation fails to remain stable given such a
tight computational budget, whereas our coupled formulation
produces a stable simulation.

Fig. 7: Our coupled neo-Hookean constraint formulation remains stable
using 20 substeps for a 2.9k element Armadillo model, while the decoupled
constraints fail for the same computational budget. Simulation with coupled
constraints (left) and with decoupled constraints (right).

Fig. 8: Crazy scramble unfolding test. Our constraint formulation recovers
a smooth shape from degenerate configurations using 30 substeps. Different
frames of the simulation are displayed in chronological order from left to right.

The improved convergence due to using coupled constraints
is typically an order of magnitude faster than the baseline
solver with decoupled constraints, and performance is even
further accelerated by using constraint clustering. The
block solve plays a significant role in improving the
performance due to its better convergence behavior, whereas
the clustering consistently reduces computational time through
parallelization. Implementing our method requires only minor
changes to an existing XPBD framework, specifically 2 × 2
block solves during constraint projection and a simple breadth-
first search algorithm applied to the constraint graph.

6.4. Robustness

As a sanity check, we conduct an experiment to validate
that our blocked constraints preserve the robustness of Macklin
and Müller [17]. We re-use the bending beam example
and scramble the vertex positions erratically. Then, we
simulate using our blocked neo-Hookean constraints using 30
substeps and 1

60 s time steps. Our blocked model recovers
from degenerate configurations as expected due to the volume
conservation properties of neo-Hookean materials. Using only
30 substeps, our blocked model recovers its initial smooth
geometry. Selected frames from this experiment are shown in
Figure 8.

Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024) 11

7. Conclusion & Future Work

In this paper, we introduce a novel approach to parallelizing
XPBD solvers for arbitrary constraint types based on graph
clustering. Our graph clustering method enhances the
computational efficiency of existing XPBD frameworks using
graph coloring based partitioning, and significant performance
gains were observed in all our experiments. Furthermore,
we introduce a coupled constraint formulation for neo-
Hookean materials that only requires using 2 × 2 linear solves
during the constraint projection step. The computational
overhead of the approach is negligible, but it is quite
effective for improving solver convergence compared to recent
formulations. Combining these two contributions, we observe
an order of magnitude faster performance compared to a
baseline XPBD solver.

Our experiments did not include dynamic constraints, which
frequently occur when contacts are simulated. In this case,
an efficient algorithm is required to introduce these dynamic
constraints to the supernodal graph such that they too can be
solved for in parallel. Additionally, although our clustering
approach is general, greedily forming clusters in heterogeneous
constraint graphs may be unstable, since constraint projection
order affects convergence.

Our approach could further benefit from more sophisticated
clustering algorithms, which have been presented in the
literature on graph clustering [27]. This could reduce the
number of constraint partitions even further compared to
our greedy approach, though care must be taken, since the
constraint graphs for soft-body simulations are particularly
dense and uniform, rendering clustering algorithms which
assume non-uniformity ineffective.

Other constraint formulations could also benefit from a
coupled blocked solve. However, as the coupled constraint
blocks get larger, time complexity of block solving increases
as a cubic polynomial if direct solves are used. If iterative
solvers are employed, computational cost may be reduced
in exchange for approximate solutions. Designing judicious
blocking strategies is thus an interesting area of future research
for highly parallel local solvers.

Acknowledgments

This work was supported by NSERC grant no. ALLRP-
570702-21.

References

[1] Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing
Cubature for Efficient Integration of Subspace Deformations. ACM Trans.
Graph. 27, 5, Article 165 (dec 2008), 10 pages. https://doi.org/10.

1145/1409060.1409118

[2] Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration
for St. Venant-Kirchhoff Deformable Models. ACM Trans. Graph.
24, 3 (jul 2005), 982–990. https://doi.org/10.1145/1073204.

1073300

[3] Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014.
Position-based simulation of continuous materials. Computers &
Graphics 44 (2014), 1–10. https://doi.org/10.1016/j.cag.

2014.07.004

[4] Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and
Miles Macklin. 2014. A Survey on Position-Based Simulation Methods in
Computer Graphics. Computer Graphics Forum 33, 6 (2014), 228–251.
https://doi.org/10.1111/cgf.12346

[5] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and
Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections
for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (jul 2014),
11 pages. https://doi.org/10.1145/2601097.2601116

[6] Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018.
Hyper-Reduced Projective Dynamics. ACM Trans. Graph. 37, 4, Article
80 (jul 2018), 13 pages. https://doi.org/10.1145/3197517.

3201387

[7] Marco Fratarcangeli and Fabio Pellacini. 2013. A GPU-Based
Implementation of Position Based Dynamics for Interactive Deformable
Bodies. Journal of Graphics Tools 17, 3 (2013), 59–66. https:

//doi.org/10.1080/2165347X.2015.1030525

[8] Marco Fratarcangeli and Fabio Pellacini. 2015. Scalable Partitioning for
Parallel Position Based Dynamics. Computer Graphics Forum 34, 2 (may
2015), 405–413. https://doi.org/10.1111/cgf.12570

[9] Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016.
Vivace: A Practical Gauss-seidel Method for Stable Soft Body Dynamics.
ACM Trans. Graph. 35, 6, Article 214 (Nov. 2016), 9 pages. https:

//doi.org/10.1145/2980179.2982437

[10] Marco Fratarcangeli, Huamin Wang, and Yin Yang. 2018. Parallel
Iterative Solvers for Real-time Elastic Deformations. In SIGGRAPH Asia
2018 Courses (Tokyo, Japan) (SA ’18). Article 14, 45 pages. https:

//doi.org/10.1145/3277644.3277779

[11] Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and
Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable
Simulation. Computer Graphics Forum 38, 2 (2019), 379–391. https:

//doi.org/10.1111/cgf.13645

[12] Gaël Guennebaud, Benoı̂t Jacob, et al. 2010. Eigen v3.
http://eigen.tuxfamily.org.

[13] Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and
Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans.
Graph. 37, 4, Article 60 (July 2018), 14 pages. https://doi.org/10.

1145/3197517.3201353

[14] Theodore Kim and Doug L. James. 2009. Skipping Steps in Deformable
Simulation with Online Model Reduction. ACM Trans. Graph. 28, 5 (dec
2009), 1–9. https://doi.org/10.1145/1618452.1618469

[15] Yinchu Liu and Sheldon Andrews. 2022. Graph Partitioning Algorithms
for Rigid Body Simulations. In Eurographics 2022 - Short Papers.
https://doi.org/10.2312/egs.20221036

[16] Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016.
XPBD: Position-Based Simulation of Compliant Constrained Dynamics.
In Proceedings of the 9th International Conference on Motion in Games
(MIG ’16). 49–54. https://doi.org/10.1145/2994258.2994272

[17] Miles Macklin and Matthias Müller. 2021. A Constraint-Based
Formulation of Stable Neo-Hookean Materials. In Motion, Interaction
and Games (MIG ’21). Article 12, 7 pages. https://doi.org/10.

1145/3487983.3488289

[18] Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong
Chentanez, Stefan Jeschke, and Matthias Müller. 2019. Small Steps
in Physics Simulation. In Proceedings of the 18th Annual ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
’19). Article 2, 7 pages. https://doi.org/10.1145/3309486.

3340247

[19] David W Matula and Leland L Beck. 1983. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of the ACM (JACM)
30, 3 (1983), 417–427.

[20] David W. Matula, George Marble, and Joel D. Isaacson. 1972. Graph
coloring algorithms. In Graph Theory and Computing, Ronald C.
Read (Ed.). Academic Press, 109–122. https://doi.org/10.1016/

B978-1-4832-3187-7.50015-5

[21] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
2007. Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. https://doi.org/10.

1016/j.jvcir.2007.01.005

[22] Matthias Müller, Miles Macklin, Nuttapong Chentanez, and Stefan
Jeschke. 2022. Physically Based Shape Matching. Computer Graphics
Forum (2022). https://doi.org/10.1111/cgf.14618

https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.1016/j.cag.2014.07.004
https://doi.org/10.1111/cgf.12346
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1145/3197517.3201387
https://doi.org/10.1080/2165347X.2015.1030525
https://doi.org/10.1080/2165347X.2015.1030525
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1145/3277644.3277779
https://doi.org/10.1145/3277644.3277779
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/1618452.1618469
https://doi.org/10.2312/egs.20221036
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/3487983.3488289
https://doi.org/10.1145/3487983.3488289
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1016/B978-1-4832-3187-7.50015-5
https://doi.org/10.1016/B978-1-4832-3187-7.50015-5
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1111/cgf.14618

12 Q.M. Ton-That, P.G. Kry, S. Andrews /Computers & Graphics (2024)

[23] Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke,
and Tae-Yong Kim. 2020. Detailed Rigid Body Simulation with Extended
Position Based Dynamics. Computer Graphics Forum 39, 8 (2020), 101–
112. https://doi.org/10.1111/cgf.14105

[24] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. CUDA,
release: 10.2.89. https://developer.nvidia.com/cuda-toolkit

[25] Albert Peiret, Sheldon Andrews, József Kövecses, Paul G. Kry, and
Marek Teichmann. 2019. Schur Complement-Based Substructuring of
StiffMultibody Systems with Contact. ACM Trans. Graph. 38, 5, Article
150 (oct 2019), 17 pages. https://doi.org/10.1145/3355621

[26] Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and
Ligang Liu. 2018. Anderson Acceleration for Geometry Optimization
and Physics Simulation. ACM Trans. Graph. 37, 4, Article 42 (jul 2018),
14 pages. https://doi.org/10.1145/3197517.3201290

[27] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review
1, 1 (2007), 27–64. https://doi.org/10.1016/j.cosrev.2007.

05.001

[28] Martin Servin, Claude Lacoursière, and Niklas Melin. 2006. Interactive
simulation of elastic deformable materials.. In SIGRAD 2006. The Annual
SIGRAD Conference; Special Theme: Computer Games.

[29] Nicholas Sharp et al. 2019. Polyscope. www.polyscope.run.
[30] Siyuan Shen, Yin Yang, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei

Lan, and Kun Zhou. 2021. High-Order Differentiable Autoencoder for
Nonlinear Model Reduction. ACM Trans. Graph. 40, 4, Article 68 (jul
2021), 15 pages. https://doi.org/10.1145/3450626.3459754

[31] Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable
Neo-Hookean Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12
(mar 2018), 15 pages. https://doi.org/10.1145/3180491

[32] Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure.
2015. Stable Constrained Dynamics. ACM Trans. Graph. 34, 4, Article
132 (jul 2015), 10 pages. https://doi.org/10.1145/2766969

[33] Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for
Accelerating Projective and Position-Based Dynamics. ACM Trans.
Graph. 34, 6, Article 246 (oct 2015), 9 pages. https://doi.org/

10.1145/2816795.2818063

[34] Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000
3D-Printing Models. arXiv preprint arXiv:1605.04797 (2016).

https://doi.org/10.1111/cgf.14105
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1145/3355621
https://doi.org/10.1145/3197517.3201290
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1145/3450626.3459754
https://doi.org/10.1145/3180491
https://doi.org/10.1145/2766969
https://doi.org/10.1145/2816795.2818063
https://doi.org/10.1145/2816795.2818063

	Introduction
	Related Work
	Background
	Parallel Solver
	Graph Coloring

	Graph Clustering
	Bounds on Parallelizability
	Grouping Constraints
	Greedy Algorithm

	Neo-Hookean Constraint Coupling
	Results & Discussion
	Implementation
	Performance
	Solver Convergence
	Robustness

	Conclusion & Future Work

